Myogenic cell movement in the developing avian limb bud in presence and absence of the apical ectodermal ridge (AER).
نویسندگان
چکیده
Fragments of quail wing bud containing myogenic cells of somitic origin and fragments of quail sphlanchopleural tissue were introduced into the interior of the wing bud of fowl embryo hosts. No movement of graft into host tissue occurred in the control, but myogenic cells from the quail wing bud fragments underwent long migrations in an apical direction to become incorporated in the developing musculature of the host. When the apical ectodermal ridge (AER), together with some subridge mesenchyme, was removed at the time of grafting, no such cell migration occurred. The capacity of grafted myogenic cells to migrate in the presence of AER persists to H.H. stage 25, when myogenesis has begun, but premyogenic cells in the somites, which normally migrate out into the early limb bud, do not migrate when somite fragments are grafted into the wing bud. Coelomic grafts of apical and proximal wing fragments showed that apical sections of quail wing buds become invaded by myogenic cells of the host, but grafts from proximal wing bud regions do not.
منابع مشابه
Dorso-ventral ectodermal compartments and origin of apical ectodermal ridge in developing chick limb.
We wish to understand how limbs are positioned with respect to the dorso-ventral axis of the body in vertebrate embryos, and how different regions of limb bud ectoderm, i.e. dorsal ectoderm, apical ridge and ventral ectoderm, originate. Signals from dorsal and ventral ectoderm control dorso-ventral patterning while the apical ectodermal ridge (AER) controls bud outgrowth and patterning along th...
متن کاملShh pathway activation is present and required within the vertebrate limb bud apical ectodermal ridge for normal autopod patterning.
Expression of Sonic Hedgehog (Shh) in the posterior mesenchyme of the developing limb bud regulates patterning and growth of the developing limb by activation of the Hedgehog (Hh) signaling pathway. Through the analysis of Shh and Hh signaling target genes, it has been shown that activation in the limb bud mesoderm is required for normal limb development to occur. In contrast, it has been state...
متن کاملApical ectodermal ridge morphogenesis in limb development is controlled by Arid3b-mediated regulation of cell movements.
The apical ectodermal ridge (AER) is a specialized epithelium located at the distal edge of the limb bud that directs outgrowth along the proximodistal axis. Although the molecular basis for its function is well known, the cellular mechanisms that lead to its maturation are not fully understood. Here, we show that Arid3b, a member of the ARID family of transcriptional regulators, is expressed i...
متن کاملSF/HGF is a mediator between limb patterning and muscle development.
Scatter factor/hepatocyte growth factor (SF/HGF) is known to be involved in the detachment of myogenic precursor cells from the lateral dermomyotomes and their subsequent migration into the newly formed limb buds. As yet, however, nothing has been known about the role of the persistent expression of SF/HGF in the limb bud mesenchyme during later stages of limb bud development. To test for a pot...
متن کاملTwo lineage boundaries coordinate vertebrate apical ectodermal ridge formation.
Proximal-distal outgrowth of the vertebrate limb bud is regulated by the apical ectodermal ridge (AER), which forms at an invariant position along the dorsal-ventral (D/V) axis of the embryo. We have studied the genetic and cellular events that regulate AER formation in the mouse. In contrast to implications from previous studies in chick, we identified two distinct lineage boundaries in mouse ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of embryology and experimental morphology
دوره 80 شماره
صفحات -
تاریخ انتشار 1984